

SEE MORE

Optimum Usage of Glass In Building

S. Senthil Kumar Asahi India Glass Limited

Glass – Indispensible?

Ans: Nearly.....

- Glass is an indispensable part of all buildings purely because of its unmatched qualities.
- Freedom from conventional building shapes, with unmatched aesthetics.
- Does not deteriorate, corrode, stain or fade.
- Transparent to visible light.
- Helps to maintain clean environment because of zero degeneration.
- It can be recycled indefinitely- structure does not deteriorate through the process.
- Glass is a pure and sustainable material.
- Helps to maintain hygienic environment with easy maintenance

Glass – A paradigm shift

Concrete Building

Clear or Tinted Glass

High Performance Glass

Smart Buildings with High Performance Glasses

Used in

- Glass touches various components of a building like :-
 - External Façade
 - Internal partition
 - Shop fronts
 - Furniture
 - Glass floors
 - Staircase
 - Decorative application in interiors
 - Fire resistance
 - And many more...

Issues in Glass Usage

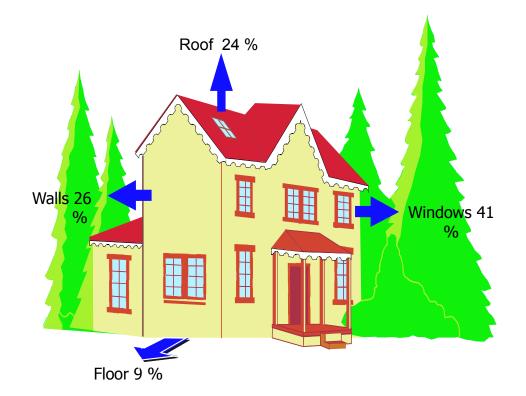
Safety

- Glass is treated as a fragile material.
- Can be fatal, if not used properly

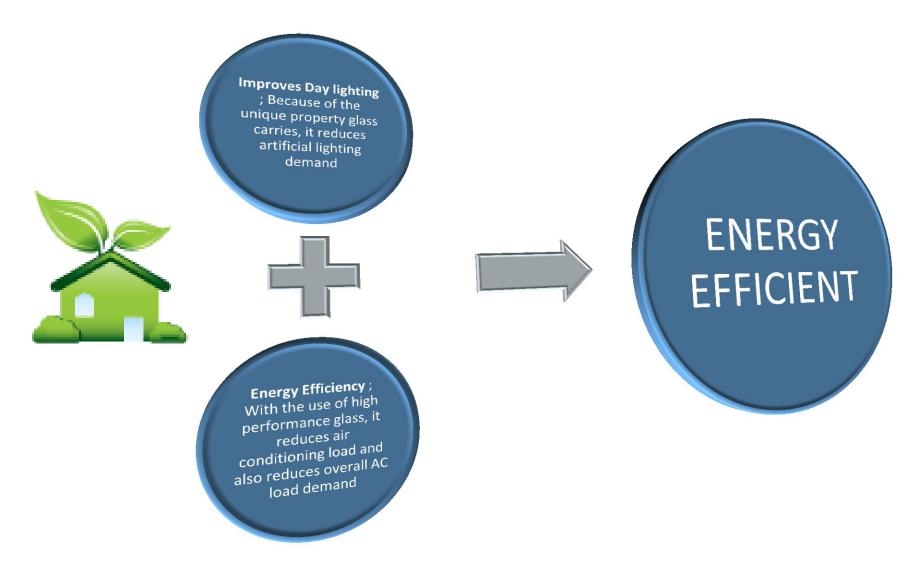
Applications

- Glass can be a good alternative for concrete wall.
- Can be more energy consuming, if not used intelligently

Challenges with glass is only due to **ignorance** of the product & not because of the product per se. Glass can be as safe & efficient, if not more, as any other conventional building material.


USE GLASS, DON'T ABUSE IT

Glass & Energy (in)efficiency

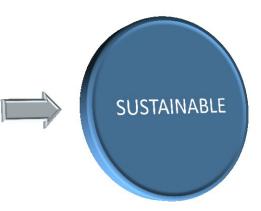

Why Glass is important in energy conservation

- For a standard building,
 Windows contribute approx.
 41% of the total heat transfer.
- This is for a WWR of 15% and naturally more the WWR, more will be the heat gain
- Right selection of glazing will positively impact the energy requirement of the building.

As windows contribute to a significant portion of the heat transfer in a building, choice of glazing plays a vital in the total heat gain to the building.

Glass – A Green Building Material

AIS

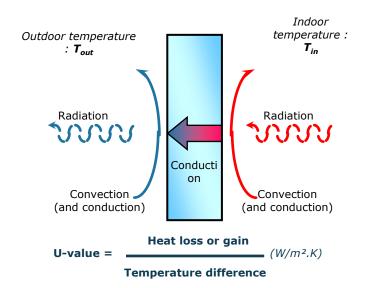

Glass – A Green Building Material

Human Connorts Connects exteriors environment with interior

Using Glass – Indian Context

Glance At Terminology


SHGC (Solar Heat Gain Coefficient)/SF (Solar Factor) :- The


fraction of external solar radiation that is admitted through a window or skylight, both directly transmitted, and absorbed and subsequently released inward.

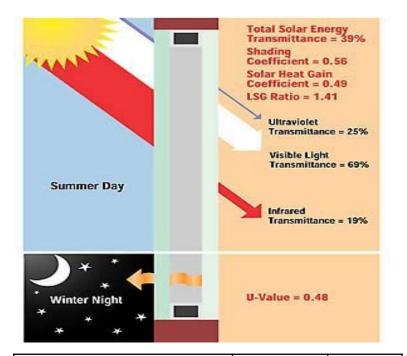
U Value (W/m²-K) :- A value that describes the ability of a material to transmit heat. The lower the number, the lower is the heat transferred through the material.

<u>RHG</u> (Relative Heat Gain) :- An attribute which describes the total performance of the glazing with regard to heat transfer due to temperature differential (U-Value), as well as solar gain (shading coefficient).

Usually 80% is contributed by Solar gain and 20% through temperature differential

Glance At Terminology

Visible transmittance (VLT) – It is the percentage of visible light, incident on the glazing, that will pass through.


Ultraviolet transmittance – It indicates the percentage of ultraviolet radiation, striking the glazing, that will pass through.

WWR- Window to wall ratio

Effective Aperture (EA) = WWR X VLT

M factor = multiplication factor

Sound transmission- It is represented by Outdoor to Indoor Transmission Class (OITC). Higher is this rating, better will be the glazing unit at sound insulation.

Window Glass	Normal STC Range	Typical Value	
Single pane glass	26-28	27	
Dual pane glass	26-33	28	
Soundproof Window over a single pane window	43-49	48	
Soundproof Window over a dual pane window	45-54	48	

Glazing products available

On-line processing

- Clear Float Glass
- Tinted Glass
- Pyrolytic Reflective Glass

Off-line processing

- Tempered Glass
- Heat Strengthened Glass
- Laminated Glass
- Low-e coated glass
- Sputter coat Reflective glass
- Photovoltaic Glass
- Lacquered Glass
- Mirror
- Frosted Glass


Glazing selection Parameters

- > Aesthetic
- Energy Efficiency
- Improved Day-lighting
- > Strength
- Security
- Sound Insulation

Glazing selection Parameters

Parameters	Importance
Aesthetic	Enhances look of the building
Energy Efficiency	It is a combination of lighting & cooling energy saving
Improved Day- lighting	Reduces artificial lighting requirement by using glazing
Glare Reduction	It can defeat the purpose of using glass

Glass	Colour	Visual light transmission	Internal Reflection	External Reflection	Solar Factor	Shading co- efficient	U value
		VLT	IR	ER	SF	SC	
А	Shade	%	%	%	%	0.y	W/m2

Energy Efficiency

- Use high performance glass
- Use glass in appropriate orientation
- Smartly design building with shades, inclination etc. to reduce direct heat ingress
- Use IGU, if building design requires
- Use rated frames

Right Selection of Glass

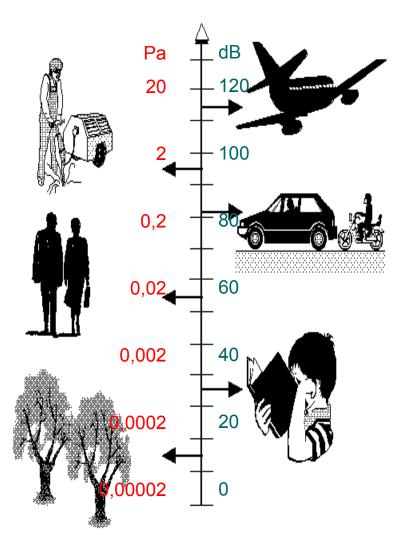
DGU Glass (DGU 6-12air-6 Clear)	Solar Factor (%age)	U-Value (W/M ² .K)	RHG (W/M²)
Clear	71%	2.8	535
Tinted	45%	2.8	347
Solar Control Glass	35%	2.8	275
Solar Control Low E Glass	20%	1.7	158

Assumption :

Solar Intensity : 630 Temp Difference : 7.8

Strength, Safety & Sound Insulation

Strength

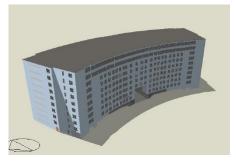

 Use tempered, heat strengthened or laminated glass

Safety

- Use Laminated Glass
- Select the types of lamination according to safety requirement & safety norms

Sound Insulation

 Use laminated glass with special acoustic interlayer

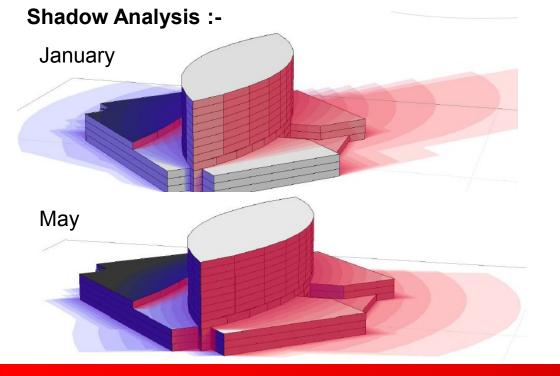

Design Factors affecting Glazing Selection

Climate Analysis : -

Climatic condition of the location is important to select type of glazing as different weather impacts differently.

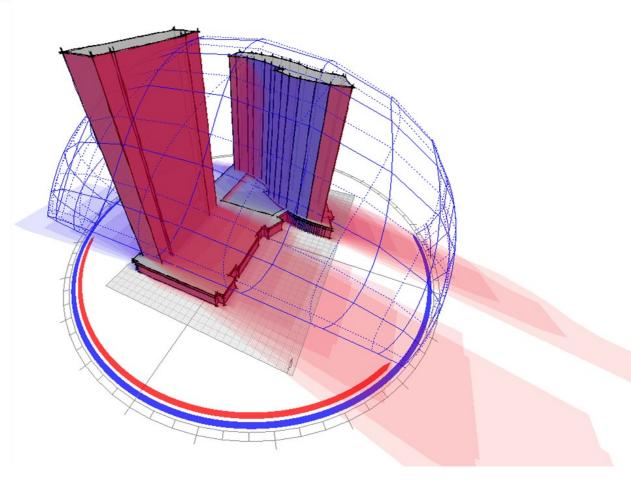
An Office building in Bangalore, where glass with SF of 37 & U-Val – 5.7 was as efficient as a glass with SF of 25 & U-Val – 3.7. The building design & the local weather conditions meant that you can relax the glass values & still be energy efficient.

Calculations	Total (KWh)	Cost of Electricit y	Savings (KWh)/ Yr	Savings (Rs.)/Yr.	Cost of Glass	Cooli ng desig n (KW H)	Cooli n Load in TR	Units	Cost	Savings	Extra Paid for Glass	
base case Clear Glass S GU	7032860	42197163			2750000	3052	862	300tr*3	21375000			
Enhance Pine SGU	7244067	43464400	-211206	1267237	5500000	2060	936	300tr*3	21375000	0	2750000	
Enhance Reef SGU	7034942	42209653	-2082	- 1 2491	5500000	2905	820	300tr*3	21375000	0	2750000	>
Proposed Glass	7099559	42597354	-66699	-400191	5750000	2800	790	300tr*2 +200*1	19000000	2375000	3000000	
Proposed Glass as per Green												
Consultant withLighting controls	7320208	43921247	-287347	-1724085	5750000	2876	812	300tr*2 +250*1	20187500	1187500	3000000	>
Proposed Glass as per Green Consultant without Lighting controls	7640898	45845389	-608038	-3648227	4250000	2885	814	300tr*2 +250*1	20187500	1187500	1500000	



Optimum Orientation of Building: -

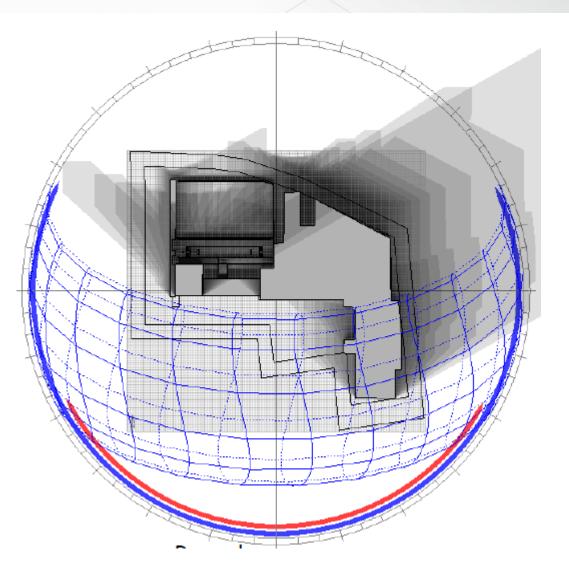
A commercial complex at Navi Mumbai with glazing on East & South Façade showed that Clear Glass performed as good as the so called "high – performance glasses" and the choice came down to aesthetics



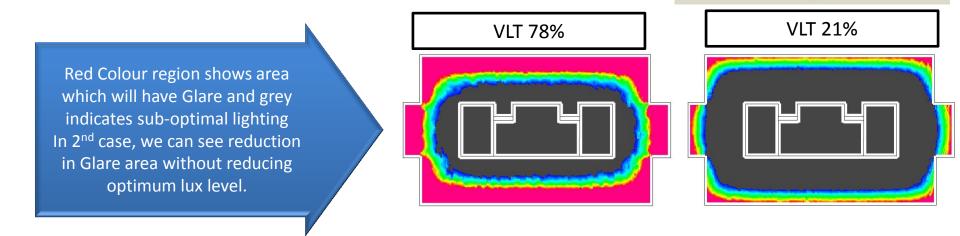
Right orientation reduces the demand for high performance parameters.

Shadow Analysis: -

Blue indicates Summer sun path and Red indicates Winter sun path.



Shadow Analysis suggests the optimum requirement of Glazing performance parameter to be used.


Passive Design: -

- A hotel building in Gurgaon had avoided their demand of high performance glasses just by adding shading devices.
- Correct shading reduces overall solar radiation intake in the building and also optimizes Light inside the building.

Daylight Analysis : -

For a corporate building in Mumbai daylight analysis was done for Clear Glass (VLT = 78%) and the high performance glass (VLT = 21%). Both the Glasses performed identical in terms of achieving the optimal lux levels. Clear Glass, in fact, caused glare is certain portions of the building.

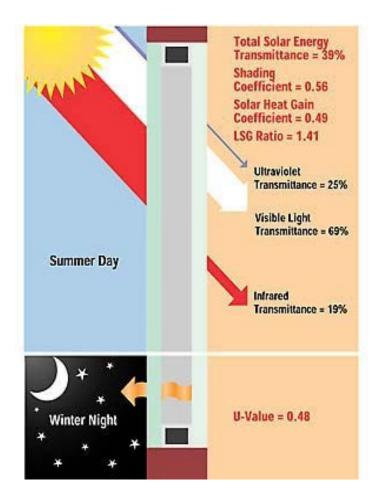
- Daylight analysis is important as it prevents overdesigning of the building and at the same time optimizes VLT requirement.
 In the case mentioned, we can use high performance glass which will reduce cooling load without compromisin
- In the case mentioned, we can use high performance glass which will reduce cooling load without compromising on Lighting load.

Glazing Products: -

Before selecting the glass, we need to look at the key performance parameters and select the best suited one depending on the building property

Glazing combination options	VLT	SHGC	U - Value
Option 1	78	0.70	2.8
Option 2	41	0.24	1.75
Option 3	34	0.22	1.7
Option 4	31	0.24	1.7
Option 5	37	0.24	1.7

Overall Energy consumption & Payback period: -


Once the aesthetic of the glazing is chosen, a comprehensive analysis of the products available, when integrated with the building systems, should be done to arrive at the optimal glazing parameters without overdesigning or under-designing the glazing systems

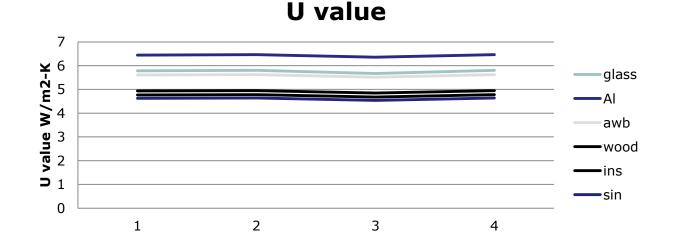
This will justify the glazing selection both by performance & cost

Туре	Total Electricity consumption	Electric cost	ity	Savings	Glazing Cost	Extra payment for HP glass	Payback	Payback
	(KWH)	Annual (Rs)	Annual (Rs)	(Rs)	(Rs)	years	Months
Base case Clear DGU	2403120	144187	20		6600000			
Grey Radiance	1027763	616657	'8	8252142	12650000	6050000	0.73	8.80
Grey Vision	944143	5664855	5.6	8753864.4	12650000	6050000	0.69	8.29
Grey Lite	1080116	648069)6	7938024	12650000	6050000	0.76	9.15
Grey Brook	919781	551868	86	8900034	12650000	6050000	0.68	8.16
	Assumptions							
Cost of electricity assumed to be Rs. 6/ unit			9.4					
Required quant	ity = 5500 sqm			9.2				
Cost of followin	g glass:		Rs./	/_ 9				
DGU			120	0 8.8				
Grey Radiance			230					
Grey Vision			230	0.4				
Grey Lite			230	8.2				
Grey Brook			230	8	_			
Enhance Mist (Spandrel Area) N/S 200			200	0 7.8				
Reflective Low e glass (Spandrel Area) E/W 160			0 7.6					
Additional spandrel area glass cost Rs./-				7.6		Payback (yrs)		
Rs. 2000 x 1645 sq.mt 3290000								
Rs. 1600 x 300 sq.mt 480000				Gre	y Radiance 📕 Gr	ey Vision 📕 Grey L	ite 🔳 Grey	Brook
		377	0000					

To summarize: -

- Effective Aperture Approach-Keep EA between 0.2 and 0.3. Larger windows will permit more light hence low-VLT glazing will do.
- Bigger windows require better glazing.
- Choose products with least SHGC and U value and optimum VLT.
- Vary glazing selection by façade
- Determine an optimum set of values for U-value, solar heat gain coefficient, and visible transmittance through more rigorous computer modeling with whole building simulation programs

Do's in Indian context


- Add overhead shading
- Add internal shading
- Have more windows on North and South facades
- Use glazing with Optimum VLT ; low
 SHGC and U value
- Use dark tinted glass at visible height and clear at higher levels
- Use EA between 0.2 to 0.3
- Add light shelves to interiors
- Use high windows (ventilators in naturally ventilated buildings)

Don't in Indian context

- Do not use glass with very low U value and moderate SHGC.
- Do not assume dark tinted glass brings solar control
- Do not use un-insulated frames
- Do not use Tempered glass as safety glass
- Do not use IGU as sound insulation glass

Learning

- Remember that same fenestration product behaves differently w.r.t. the specific design.
- It should not be assumed that products with Low U-value and SHGC are best and universal solution.
- Direct radiation falling on the windows should be minimized.
- For shaded windows, products with lower U values perform better.
- For un-shaded windows receiving high amount of solar radiation, products with low SHGC would perform better.
- Hence glazing should be selected after thoroughly considering the design.

Thank you